Role of stem-cell-derived hepatic endoderm in human drug discovery.
نویسندگان
چکیده
Accurate prediction of human drug toxicity is a vital part of the drug discovery process. However, the safety evaluation process is hindered by the availability and quality of primary human liver models with which to study drug toxicity. In an attempt to overcome this limitation, research has focused on deriving human hepatocytes from a number of sources, including progenitors from fetal and adult liver, human cell lines derived from liver tumours, immortalized human hepatocytes and pluripotent stem cells. The major hurdles in developing scalable and high-fidelity human hepatocytes from hepatic cell lines and fetal and adult progenitors have been limited organ availability, homogeneous cell purification, short-term cell culture, and the rapid loss of hepatocyte phenotype and function in culture. Therefore it has been necessary to find alternative sources of human hepatocytes which circumvent these issues. The research in our group has focused on generating human hepatic endoderm from the scalable pluripotent stem cell populations, human embryonic stem cells and induced pluripotent stem cells. We have developed efficient and scalable models of human hepatocyte differentiation from these cell populations. Moreover, stem-cell-derived hepatic endoderm displays many of the functional attributes of primary human hepatocytes. Our research is now focused on developing defined culture systems and improving cell culture microenvironments in order to improve our understanding of the mechanisms regulating human liver development. This will in turn facilitate the generation of broad-range functioning hepatic endoderm in vitro. By taking these approaches, we believe that it will be possible to improve the predictive nature of our in vitro models, revolutionizing the manner in which industry measures human drug toxicity and having an impact on drug attrition.
منابع مشابه
Expression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells
Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...
متن کاملA Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems
Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...
متن کاملEfficient differentiation of functional hepatocytes from human embryonic stem cells.
Differentiation of human embryonic stem cells (hESCs) to specific functional cell types can be achieved using methods that mimic in vivo embryonic developmental programs. Current protocols for generating hepatocytes from hESCs are hampered by inefficient differentiation procedures that lead to low yields and large cellular heterogeneity. We report here a robust and highly efficient process for ...
متن کاملLaminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells.
Human pluripotent stem cells (hPSCs) have gained a solid foothold in basic research and drug industry as they can be used in vitro to study human development and have potential to offer limitless supply of various somatic cell types needed in drug development. Although the hepatic differentiation of hPSCs has been extensively studied, only a little attention has been paid to the role of the ext...
متن کاملThree-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction
The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 38 4 شماره
صفحات -
تاریخ انتشار 2010